

TESIS DOCTORAL

"ESTUDIO DEL IMPACTO DE LOS PRINCIPIOS DIDÁCTICOS DE BROWN Y WILSON EN EL APRENDIZAJE DE LA PROGRAMACIÓN EN PYTHON CON ESTUDIANTES DE PRIMER AÑO EN CARRERAS DE INFORMÁTICA EN INACAP"

Estudiante : Héctor Belmar Garrido

Tutor : Dr. Jorge Pinochet Iturriaga

Agradecimientos

Quiero agradecer a mi familia, por aceptar de manera comprensiva y colaborativa mi ausencia durante los fines de semana y los veranos, por más de 5 años, mientras realicé mis estudios doctorales. En particular a mi esposa Verónica, quien soportaba la soledad de los sábados y domingos, mientras yo cada semana me sentaba frente a mi escritorio y mi atención estaba ahí por horas, inclusive durante parte de la noche.

También quiero agradecer a INACAP (Instituto Nacional de Capacitación Profesional) por haber confiado en mí, al haberme becado para realizar estudios doctorales y por la insistencia de la directora de la sede Ñuñoa de INACAP durante el año 2017, la señora Cecilia Iglesias, para que me atreviera a realizar estudios doctorales de lo cual INACAP sería parte mediante el financiamiento.

Además, quiero agradecer a la comisión evaluadora, por su apertura a incorporar nuevos paradigmas de enseñanza, como son las habilidades de pensamiento computacional, habilidad fundante en la presente investigación. Los aportes de cada uno de ellos, sus comentarios cuando aprobaron el DEA, cuando rendí el Avance de Tesis I y cuando rendí el Avance de Tesis II, en particular la valoración del Dr. Rodríguez sobre las publicaciones, el aporte del Dr. Joo sobre los índices estadísticos en el análisis de resultados y los comentarios del Dr. García-Bermejo sobre la concordancia de esta investigación y la realidad educativa que él ha experimentado en la enseñanza de la Programación Computacional.

Por último, agradecer a la Universidad Metropolitana de Ciencias de la Educación, por haberme aceptado como estudiante del doctorado, sin tener formación pedagógica y a pesar de mi edad. Ya que ese primer paso fue fundamental para iniciar este camino. También quiero agradecer a mis profesores y en especial agradecer a mi tutor, quien cuando nadie quería ser mi tutor de tesis, el Dr. Jorge Pinochet aceptó serlo con su buena disposición, conocimientos y dedicación.

Índice

Introducción	1
CAPÍTULO I: EL PROBLEMA DE INVESTIGACIÓN	4
1.1 Antecedentes del problema	4
1.1.1 Estudiantes que ingresan a la educación superior	4
1.1.2 Estudiantes que ingresan a estudiar Informática en INACAP	6
1.1.3 Propósitos formativos de las carreras de Informática	7
1.2 Contexto histórico de la enseñanza de la programación	9
1.2.1 Una mirada desde la Universidad Nacional de Colombia	10
1.2.2 Un caso desde la Universidad de TI West, Dinamarca	11
1.2.3 Una mirada desde la Universidad de Durham en el Reino Unido	12
1.2.4 Estudio sobre fundamentos de programación realizado en INACAP	12
1.3 El problema	14
CAPITULO II MARCO TEÓRICO	17
2.1 Programación computacional y Pensamiento Computacional	18
2.2 Líneas de investigación en enseñanza – aprendizaje de la programación	26
2.2.1 Ciencias de la Computación y aplicaciones	28
2.2.2 Gamificación: enseñanza mediante el uso de juegos	
2.2.3 Robótica educativa.	34
2.2.4 Desarrollo de la Programación y el Pensamiento Computacional	36
2.3 Elementos Pedagógicos y Didácticos.	39
2.3.1 Modelos pedagógicos y didáctica	39
2.3.2 Didáctica en Programación Computacional.	42
2.4 Preguntas de investigación	50
CAPITULO III OBJETIVOS	
Objetivo general	51
Objetivos específicos	51
Hipótesis:	
Relevancia y originalidad	52
CAPÍTULO IV: MARCO METODOLÓGICO	53
4.1 Generalidades	53
4.2 Contenidos de la metodología	54
4.2.1 Variables; dependientes, independientes y sociodemográficas	54

4.2.2 Población y muestra del estudio piloto	54
4.2.3- Elaboración del instrumento del estudio piloto.	55
4.2.4 Aplicación del instrumento piloto.	61
4.2.5 Análisis psicométricos del estudio piloto	62
4.2.7 Instrumento del estudio final.	68
4.2.8 Aplicación del instrumento sobre la muestra definitiva	69
CAPÍTULO V: RESULTADOS ESTUDIO FINAL	70
Análisis de datos del estudio final	70
5.1 Análisis de normalidad de los datos:	70
5.2 Análisis factorial de componentes principales (AFCP).	72
5.3 Análisis de medianas, promedios, desviación estándar y varianzas	75
5.4 Prueba ANOVA factorial de factores repetidos	79
CAPITULO VI: DISCUSION Y CONCLUSIONES	82
6.1 ETAPA I: Revisión bibliográfica	82
6.2 ETAPA II: Validación de test experimental en Python	89
6.2.1 Generalidades	90
6.2.2 Hallazgos y comentarios.	91
6.2.3 Proyecciones	92
6.3 ETAPA III: Resultado de la etapa experimental	93
6.4 Proyecciones y Limitaciones del estudio	96
CAPITULO VII: BIBLIOGRAFÍA	98
CAPITULO VIII: ANEXOS	105
ANEXO 1: Tabla de aceptación o rechazo por pregunta según índices de dificultad y discriminación	105
ANEXO 2: Test de 90 ítems que fue validado por expertos	108
ANEXO 3: Test de 70 ítems que se aplicará en el estudio psicométrico	124
ANEXO 4: Test de 45 ítems que se aplicó en el estudio final	136
ANEXO 5: Planificación 12 clases Unidad III de asignatura "Introducción a la	
programación"	
ANEXO 6 Resultados obtenidos por grupos control y experimental	160

Índice de tablas

Número	Título	Página
Tabla 1	Evolución de la matrícula total por tipo de institución	4
Tabla 2	Evolución Matrícula 1° año de Pregrado por tipo de institución.	4
Tabla 3	Evolución de la matrícula Nacional de 1° año de INACAP	6
Tabla 4	Matrícula Nacional de 1° año de informática en INACAP	6
Tabla 5	Porcentaje de alumnos reprobados: 2018, 2019 y 2020	14
Tabla 6	Líneas de investigación en pensamiento computacional	26
Tabla 7	Artículos investigaciones en ciencias de la computación	30
Tabla 8	Estudiantes de 1° año de informática en INACAP	54
Tabla 9	Interpretación del índice kappa de Fleiss	61
Tabla 10	Rango de validez para índices de dificultad y discriminación	63
Tabla 11	Composición de 6 componente principales – estudio piloto	67
Tabla 12	Muestra por factores – estudio piloto	67
Tabla 13	Promedios y varianzas del pre y post test de ambos grupos	69
Tabla 14	Composición 9 componentes principales – estudio final	74
Tabla 15	Muestra por factores – estudio final	74
Tabla 16	Indicadores y resultados del estudio final	76
Tabla 17	Indicadores y resultados	94

Índice de figuras

Número	Título	Página
Figura 1	Muestra formato evaluación de expertos	58
Figura 2	Muestra planilla llena por un experto	58
Figura 3	Muestra cálculo coeficiente validación de contenido	60
Figura 4	Muestra aplicación de índices de dificultad y discriminación	64
Figura 5	Gráfico de sedimentación del AFCP	66
Figura 6	Gráfico de frecuencia – pretest – grupo experimental	70
Figura 7	Gráfico de frecuencia – post test – grupo experimental	70
Figura 8	Gráfico de frecuencia – pretest – grupo control	71
Figura 9	Gráfico de frecuencia – post test – grupo control	71
Figura 10	Gráfico de sedimentación del AFCP de resultados	73
Figura 11	Gráfico de caja de resultados final	78
Figura 13	Gráfico medidas marginales estimadas	82
Figura 14	Gráfico de puntajes obtenidos	95

RESUMEN

Esta investigación estudia los efectos de la aplicación de la didáctica en el proceso de enseñanza-aprendizaje de la programación computacional, con foco en las habilidades de programación en el lenguaje computacional Python. El problema planteado surge por las tasas de reprobación de los estudiantes en programación computacional en carreras de informática en INACAP y el consiguiente interés por promover mejores aprendizajes. El objetivo general es estudiar los efectos de los principios didácticos de Brown y Wilson, sobre el proceso de enseñanza - aprendizaje de la programación en Python en estudiantes de carreras de informática de INACAP. El marco teórico se sustenta en la didáctica de la enseñanza de la programación computacional y los conceptos de habilidades de pensamiento computacional de diversos referentes teóricos, y en particular en los principios didácticos de Brown y Wilson. Esta investigación se realiza con una metodología cuantitativa de alcance explicativo y con un diseño cuasiexperimental, con una muestra intencionada para la etapa psicométrica conformada por 189 estudiantes de pregrado de informática de segundo año y superiores, y para la etapa experimental la muestra estará conformada por 100 alumnos de pregrado de primer año de carreras de Informática, de los cuales 50 serán el grupo experimental y 50 serán el grupo de control. La hipótesis que se plantea es que "Los estudiantes del grupo experimental obtienen un mayor rendimiento al aplicar los principios didácticos de Brown y Wilson, que los estudiantes del grupo control que reciben la enseñanza de manera tradicional". La técnica de recolección de datos utilizada fue una prueba de selección múltiple 45 preguntas. El análisis de los datos se realizó aplicando criterios estadísticos, comparación de medias y varianzas, entre otras. El resultado obtenido, ratificó la hipótesis por lo que al aplicar los principios de Brown y Wilson los estudiantes obtienen mayores logros.

Palabras claves: Pensamiento computacional, programación computacional, algoritmo, didáctica en programación.

ABSTRACT

This research studies the effects of the application of didactics in the teachinglearning process of computer programming, focusing on programming skills in the Python computer language. The problem arises from the failure rates of students in computer programming in computer science careers in INACAP and the consequent interest in promoting better learning. The general objective is to study the effects of Brown and Wilson's didactic principles on the teaching-learning process of Python programming in computer science students at INACAP. The theoretical framework is based on the didactics of teaching computer programming and the concepts of computational thinking skills of various theoretical references, and in particular on the didactic principles of Brown and Wilson. This research is carried out with a quantitative methodology of explanatory scope and with a quasi-experimental design, with a purposive sample for the psychometric stage made up of 189 undergraduate computer science students in their second year and above, and for the experimental stage the sample will be made up of 100 undergraduate students in their first year of computer science careers, of which 50 will be the experimental group and 50 will be the control group. The hypothesis proposed is that "The students in the experimental group obtain a higher performance when applying Brown and Wilson's didactic principles than the students in the control group who are taught in a traditional way". The data collection technique used was a 45-question multiple-choice test. The data analysis was performed by applying statistical criteria, comparison of means and variances, among others. The result obtained ratified the hypothesis that by applying Brown's and Wilson's principles, students obtain higher achievements.

Key words: Computational thinking, computational programming, algorithm, programming didactics.